深入理解nginx中的signal处理机制

1. 引言

  在计算机系统中,信号处理是一项重要的任务,它允许操作系统和应用程序之间进行通信和协调。在网络服务器软件中,如Nginx,信号处理机制起着关键作用,它能够捕获和处理各种类型的信号,从而实现服务器的灵活控制和运行时的动态行为。

  nginx是一款高性能、轻量级的Web服务器和反向代理服务器,被广泛应用于构建可靠、高效的Web应用程序和服务。为了满足各种需求和应对不同的运行时情况,nginx提供了丰富的信号处理机制,使得管理员和开发人员能够通过发送信号来实现对服务器的管理和控制。

  信号是一种在操作系统中用于通知进程发生某种事件或请求某种操作的机制。它可以用于向进程发送中断信号、终止信号、重启信号等,以及自定义的应用程序信号。nginx利用信号处理机制,可以捕获和处理各种信号,例如重新加载配置文件、优雅地停止或重启服务器等。

  深入理解nginx中的信号处理机制需要了解信号的基本概念和操作系统对信号的支持。当nginx接收到一个信号时,它会根据信号的类型和当前的运行状态执行相应的操作。例如,当接收到重新加载配置文件的信号时,nginx会重新读取配置文件并应用新的配置,而不需要重启整个服务器。

2. signal信号处理函数的注册

  在nginx的main函数中有一个函数调用,如下:

    if (ngx_init_signals(cycle->log) != NGX_OK) {
        return 1;
    }

  这个调用的作用就是向操作系统注册当前进程的signal处理函数。

  下面是ngx_init_signals函数的实现源码:


ngx_int_t
ngx_init_signals(ngx_log_t *log)
{
    ngx_signal_t      *sig;
    struct sigaction   sa;

    for (sig = signals; sig->signo != 0; sig++) {
        ngx_memzero(&sa, sizeof(struct sigaction));

        if (sig->handler) {
            sa.sa_sigaction = sig->handler;
            sa.sa_flags = SA_SIGINFO;

        } else {
            sa.sa_handler = SIG_IGN;
        }

        sigemptyset(&sa.sa_mask);
        if (sigaction(sig->signo, &sa, NULL) == -1) {
#if (NGX_VALGRIND)
            ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,
                          "sigaction(%s) failed, ignored", sig->signame);
#else
            ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
                          "sigaction(%s) failed", sig->signame);
            return NGX_ERROR;
#endif
        }
    }

    return NGX_OK;
}

  在ngx_init_signals函数中,对定义的signals数组进行遍历,并将对应的signal处理函数注册到操作系统中。

  在注册一个signal信号的时候,需要分几步:

    1. 初始化一个sigaction结构体。
    1. 设置sigaction结构体中sa_sigaction或者sa_handler(二选一)至信号处理函数。对于前者,需要设置sa_flags = SA_SIGINFO。
    1. 如果不希望在处理当前signal的时候block其他信号,那么用sigemptyset清空sa_mask。
    1. 最后,通过sigaction向操作系统注册消息处理函数。

  通过上面的循环遍历,nginx注册了SIGHUP(reload)、SIGUSR1(reopen)、SIGWINCH(noaccept)、SIGTERM(stop)、SIGQUIT(quit)、SIGUSR2(change bin)、SIGARLRM(timer)、SIGINT(stop)、SIGIO()、SIGCHLD(child reap)、SIGSYS(ignore)、SIGPIPE(ignore)共12个信号。

  signals的定义如下:


ngx_signal_t  signals[] = {
    { ngx_signal_value(NGX_RECONFIGURE_SIGNAL),
      "SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),
      "reload",
      ngx_signal_handler },
-
    { ngx_signal_value(NGX_REOPEN_SIGNAL),
      "SIG" ngx_value(NGX_REOPEN_SIGNAL),
      "reopen",
      ngx_signal_handler },

    { ngx_signal_value(NGX_NOACCEPT_SIGNAL),
      "SIG" ngx_value(NGX_NOACCEPT_SIGNAL),
      "",
      ngx_signal_handler },

    { ngx_signal_value(NGX_TERMINATE_SIGNAL),
      "SIG" ngx_value(NGX_TERMINATE_SIGNAL),
      "stop",
      ngx_signal_handler },

    { ngx_signal_value(NGX_SHUTDOWN_SIGNAL),
      "SIG" ngx_value(NGX_SHUTDOWN_SIGNAL),
      "quit",
      ngx_signal_handler },

    { ngx_signal_value(NGX_CHANGEBIN_SIGNAL),
      "SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),
      "",
      ngx_signal_handler },

    { SIGALRM, "SIGALRM", "", ngx_signal_handler },

    { SIGINT, "SIGINT", "", ngx_signal_handler },

    { SIGIO, "SIGIO", "", ngx_signal_handler },

    { SIGCHLD, "SIGCHLD", "", ngx_signal_handler },

    { SIGSYS, "SIGSYS, SIG_IGN", "", NULL },

    { SIGPIPE, "SIGPIPE, SIG_IGN", "", NULL },

    { 0, NULL, "", NULL }
};

3. 设置信号阻塞

  为了nginx在处理信号的过程中确保能够正确地处理并且避免被中断,需要对信号设置block阻塞标记,从而能够在处理指定信号的时候,避免新的信号进来打扰处理过程。

  在ngx_master_process_cycle函数(当配置开启了master_process模式时会作用master进程的主循环)的开头部分,进行了相关设置,源码如下:

    sigemptyset(&set);
    sigaddset(&set, SIGCHLD);
    sigaddset(&set, SIGALRM);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGINT);
    sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
    sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));

    if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      "sigprocmask() failed");
    }

    sigemptyset(&set);


  这里对前面设置的10个信号(除了SIG_IGN)进行了设置。

4. signal信号的处理

  在nginx中,signal信号是由ngx_signal_handler函数负责接收处理的。不过,ngx_signal_handler函数对信号的处理其实就是对应接收到的信号设置相应的标记,然后立即返回。譬如收到SIGTERM信号,则设置ngx_terminate = 1,收到SIGHUP信号,则设置ngx_reconfigure等等。其自己本身不进行实际的信号处理。
  signal信号的处理逻辑是在主循环中进行的。如果是master/worker多进程运行模式下,在ngx_master_process_cycle函数中处理,如果是单进程运行模式下,则是在ngx_single_process_cycle函数中进行处理。在主循环函数中,它会检查ngx_signal_handler中设置的标记位,然后根据各个标记位进行对应的处理。

  譬如在ngx_master_process_cycle函数中对配置重加载信号的处理逻辑如下:

	if (ngx_reconfigure) {
		ngx_reconfigure = 0;

		if (ngx_new_binary) {
			ngx_start_worker_processes(cycle, ccf->worker_processes,
									   NGX_PROCESS_RESPAWN);
			ngx_start_cache_manager_processes(cycle, 0);
			ngx_noaccepting = 0;

			continue;
		}

		ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");

		cycle = ngx_init_cycle(cycle);
		if (cycle == NULL) {
			cycle = (ngx_cycle_t *) ngx_cycle;
			continue;
		}

		ngx_cycle = cycle;
		ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
											   ngx_core_module);
		ngx_start_worker_processes(cycle, ccf->worker_processes,
								   NGX_PROCESS_JUST_RESPAWN);
		ngx_start_cache_manager_processes(cycle, 1);

		/* allow new processes to start */
		ngx_msleep(100);

		live = 1;
		ngx_signal_worker_processes(cycle,
									ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
	}

 &esmp;首先它判断是否ngx_reconfigure被设置为1了,如果没有设置,那么不执行配置重加载的操作。
  接着,如果是正在更新二进制文件操作,即ngx_new_binary=1,那么需要在这里启动新的worker进程和cache manager进程。
  再下来是调用ngx_init_cycle重新加载配置文件。
  加载新的worker进程,最后通知老的worker进程进行优雅退出。

5. 跨进程发送signal

  在nginx运行的过程中,如果我们需要让当前的nginx能够重新加载配置文件,我们可以在命令行输入以下命令:

nginx -s reload

  又或者,如果我们希望停止nginx运行,我们可以在命令行输入一下命令:

nginx -s stop

  因为我们在命令行输入以上命令的时候,其实shell又重新启动了一个新的nginx进程,那新的nginx进程是如何通知正在提供服务的nginx进程执行相应的动作的呢?

  这里就涉及到跨进程信号发送的操作了。
&esmp; 新启动的进程根据命令行参数,会读取正在提供服务的nginx进程的pid文件,得到它的master进程的pid,然后调用系统函数kill来向master进程,这样子master进程就会收到对应的信号,然后master主循环函数就会进行信号的处理。

  在main函数中,我们可以看到下面的代码:

    if (ngx_signal) {
        return ngx_signal_process(cycle, ngx_signal);
    }

  意思就是向nginx进程发送指定的信号。再看ngx_signal_process函数的实现:

ngx_int_t
ngx_signal_process(ngx_cycle_t *cycle, char *sig)
{
    ssize_t           n;
    ngx_pid_t         pid;
    ngx_file_t        file;
    ngx_core_conf_t  *ccf;
    u_char            buf[NGX_INT64_LEN + 2];

    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "signal process started");

    ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);

    ngx_memzero(&file, sizeof(ngx_file_t));

    file.name = ccf->pid;
    file.log = cycle->log;

    file.fd = ngx_open_file(file.name.data, NGX_FILE_RDONLY,
                            NGX_FILE_OPEN, NGX_FILE_DEFAULT_ACCESS);

    if (file.fd == NGX_INVALID_FILE) {
        ngx_log_error(NGX_LOG_ERR, cycle->log, ngx_errno,
                      ngx_open_file_n " \"%s\" failed", file.name.data);
        return 1;
    }

    n = ngx_read_file(&file, buf, NGX_INT64_LEN + 2, 0);

    if (ngx_close_file(file.fd) == NGX_FILE_ERROR) {
        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                      ngx_close_file_n " \"%s\" failed", file.name.data);
    }

    if (n == NGX_ERROR) {
        return 1;
    }

    while (n-- && (buf[n] == CR || buf[n] == LF)) { /* void */ }

    pid = ngx_atoi(buf, ++n);

    if (pid == (ngx_pid_t) NGX_ERROR) {
        ngx_log_error(NGX_LOG_ERR, cycle->log, 0,
                      "invalid PID number \"%*s\" in \"%s\"",
                      n, buf, file.name.data);
        return 1;
    }

    return ngx_os_signal_process(cycle, sig, pid);

}

  非常好理解,就是读取pid文件,然后调用ngx_os_signal_process函数对pid发送signal。由于linux/unix和windows的signal机制是不一样的,所以ngx_os_signal_process函数针对两类操作系统nginx进行了单独实现,这里不再赘述。

6. 总结

  以上通过对nginx的源码分析,从signal信号的注册和阻塞状态设置,到signal信号的处理,最后到跨进程singla信号的发送进行了详细的介绍,我们可以从中一窥nginx如何利用操作系统的signal机制来实现对进程的各种控制功能,有不当之处敬请指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/600459.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vivado Versal ACAP 可编程器件镜像 (PDI) 设置

Versal ACAP 可编程器件镜像 (PDI) 设置 下表所示 Versal ACAP 器件的器件配置设置可搭配 set_property <Setting> <Value> [current_design] Vivado 工具 Tcl 命令一起使用。 注释 &#xff1a; 在 Versal ACAP 架构上 &#xff0c; 原先支持将可编程器…

408算法题专项-2009年

题目&#xff1a; 分析&#xff1a;09年的链表题目比较简单&#xff0c;直接构建链表&#xff0c;然后根据不同思路模拟即可。 思路一&#xff1a;循环遍历 思考&#xff1a;最容易想到的思路&#xff0c;直接暴力循环。偷了一下懒&#xff0c;变量名称没用题目的&#xff0c;…

力扣每日一题105:从前序与中序序列构造二叉树

题目 给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,7], inorder [9,3,15,20,7] 输出: [3,9,20,null,null,1…

语音识别--kNN语音指令识别

⚠申明&#xff1a; 未经许可&#xff0c;禁止以任何形式转载&#xff0c;若要引用&#xff0c;请标注链接地址。 全文共计3077字&#xff0c;阅读大概需要3分钟 &#x1f308;更多学习内容&#xff0c; 欢迎&#x1f44f;关注&#x1f440;【文末】我的个人微信公众号&#xf…

硬盘惊魂!文件夹无法访问怎么办?

在数字时代&#xff0c;数据的重要性不言而喻。然而&#xff0c;有时我们会遇到一个令人头疼的问题——文件夹提示无法访问。当你急需某个文件夹中的文件时&#xff0c;却被告知无法打开&#xff0c;这种感受真是难以言表。今天&#xff0c;我们就来深入探讨这个问题&#xff0…

第六代移动通信介绍、无线网络类型、白皮书

关于6G 即第六代移动通信的介绍&#xff0c; 图解通信原理与案例分析-30&#xff1a;6G-天地互联、陆海空一体、全空间覆盖的超宽带移动通信系统_6g原理-CSDN博客文章浏览阅读1.7w次&#xff0c;点赞34次&#xff0c;收藏165次。6G 即第六代移动通信&#xff0c;6G 将在5G 的基…

VTK —— 三、简单操作 - 示例3 - 将点投影到平面上(附完整源码)

代码效果 本代码编译运行均在如下链接文章生成的库执行成功&#xff0c;若无VTK库则请先参考如下链接编译vtk源码&#xff1a; VTK —— 一、Windows10下编译VTK源码&#xff0c;并用Vs2017代码测试&#xff08;附编译流程、附编译好的库、vtk测试源码&#xff09; 教程描述 本…

Day 63:单调栈 LeedCode 84.柱状图中最大的矩形

84. 柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例 1: 输入&#xff1a;heights [2,1,5,6,2,3] 输出&#xff1a;10 解释&a…

MySQL表的增删改查

在进行表操作之前,一定要use选中数据库 注释&#xff1a;在SQL中可以使用 --空格描述 来表示注释说明 CRUD 即增加(Create)、查询(Retrieve)、更新(Update)、删除(Delete)四个单词的首字母。 文章目录 数据库约束约束类型NOT NULL约束UNIQUE&#xff1a;唯一约束DEFAULT&…

【计算机科学速成课】笔记三

文章目录 17.集成电路真空管时代晶体管时代集成电路时代印刷电路板时代光刻时代 17.集成电路 Over the past six episodes, we delved into software, 过去 6 集我们聊了软件 \N 从早期编程方式到现代软件工程 from early programming efforts to modern software engineerin…

synchronized与volatile关键字

1.synchronized的特性 1.1互斥 synchronized 会起到互斥效果, 某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到 同一个对象 synchronized 就会阻塞等待. 进入 synchronized 修饰的代码块, 相当于 加锁 退出 synchronized 修饰的代码块, 相当于 解锁 syn…

游戏辅助 -- 实战找人物对象基址

本节课在线学习视频&#xff1a; https://pan.quark.cn/s/3e83f4568031 一、打开CE工具&#xff0c;加载游戏进程 二、搜索人物血量144&#xff0c;选择首次扫描 三、进入游戏&#xff0c;让人物血量发生变化&#xff0c;搜索减少的数值 四、发现绿色的数值&#xff0c;一般绿…

Jsoncpp介绍

1.简介 Jsoncpp 是一个 C 库&#xff0c;用于解析和生成 JSON 数据。它提供了一个易于使用的 DOM&#xff08;Document Object Model&#xff09;风格的 API&#xff0c;允许开发者以树形结构的方式操作 JSON 数据。 Jsoncpp 是一个C库&#xff0c;允许操作JSON值&#xff0c;…

246 基于matlab的交流电机动态方程

基于matlab的交流电机动态方程&#xff0c;用于交流电机动态分析。输入电机的额定功率(kW)、电机的额定转速(r/min)、转子外径(m)、铁心长(m)转子槽数、电机极对数 等参数&#xff0c;输出转速变化、力矩变化等结果。程序已调通&#xff0c;可直接运行。 246 交流电机动态 转速…

安卓开发(二)Android开发基础知识

了解Android Android大致可以分为4层架构&#xff1a;Linux内核层、系统运行库层、应用框架层和应用层。 内核层&#xff1a;Android系统是基于Linux内核的&#xff0c;这一层为Android设备的各种硬件提供了底层的驱动&#xff0c;如显示驱动、音频驱动、照相机驱动、蓝牙驱动…

深入浅出(五)JsonCpp库

JsonCpp库 1. JsonCpp 库1.1 JsonCpp库下载 2. JsonCpp库编译与部署3. C示例 1. JsonCpp 库 JsonCpp 是一个开源的 C 库&#xff0c;用于解析、生成和操作 JSON 数据。它提供了简单易用的 API&#xff0c;使得在 C 程序中处理 JSON 数据变得方便和高效。以下是 JsonCpp 库的一…

Dell EMC Storage Unity: Remove/Install Memory Module

SP A 一个内存故障 点击system view -> Enclosures->Top查看 再次查看Alert&#xff0c; 确认内存出现问题 进入Service &#xff0c; 将SP A置为service状态 移出SP A &#xff0c;进行内存更换 更换完内存后&#xff0c;将SP A插入设备&#xff0c;并进行线缆连接 进入…

了解 Postman:这个 API 工具的功能和用途是什么?

在软件开发中&#xff0c;经常听到 Postman 这个软件名。但其实很多新手开发者只知道这是软件开发常用的软件&#xff0c;并不知道实际是一个什么样工具&#xff0c;不知道具体的作用是什么。那今天就跟大家好好唠唠 Postman 这个软件。想要学习更多关于 Postman 的知识&#x…

洛谷 P3391:文艺平衡树 ← Splay树模板题

【题目来源】https://www.luogu.com.cn/problem/P3391【题目描述】 您需要写一种数据结构&#xff08;可参考题目标题&#xff09;&#xff0c;来维护一个有序数列。 其中需要提供以下操作&#xff1a;翻转一个区间&#xff0c;例如原有序序列是 5 4 3 2 1&#xff0c;翻转区间…

分布式任务调度工具 XXL-JOB

默认的账号密码是&#xff1a;admin/123456 一&#xff0c;部署docker容器 docker run \ -e PARAMS"--spring.datasource.urljdbc:mysql://192.168.150.101:3306/xxl_job?Unicodetrue&characterEncodingUTF-8 \ --spring.datasource.usernameroot \ --spring.dataso…
最新文章